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Abstract—A strain energy function is obtained for nonhomogencous, laminated. composite plates
for the case when cach lumina exhibits monoclinic material symmetry about its middle surface. The
starting point is the three-dimensional strain energy based on geometrically nonlinear elasticity
theory. The variational-asymptotical method is used to decompose the nonlinear three-dimensional
problem into two separate problems: (1) a linear, through-the-thickness. one-dimenstional analysis
to obtain appropriate plate elastic constants and relations between plate deformation variables and
three-dimensional resuits: and (2) a nonlinear, two-dimensional analysis to analyse the plate
deformation. Closed-form analytical expressions are derived for the plate elastic constants as well
as the displaccment and strain distributions through the thickness of the plate. Even with this
generality, no more variables are involved than in Reissner -Mindlin plate theory. Also, in spite of
the simple form for the plate strain energy, there are no restrictions on the magnitudes of dis-
placement and rotation measures. Two approximations are obtained in the through-the-thickness
analysis, the first being equivalent to classical laminated plate theory, and the second incorporating
shear deformation effects, The fiest approximation is asymptotically correct for plates of the form
considered. The second approximation is asymptotically correct {or plates with certatn additional
material restrictions. In applying the method, once first solves the through-the-thickness problem
and then uses the resulting clustic constants to pose the nonlinear plate problem. Alfter solving the
nonlinear problem, one substitutes these results back into the lincar three-dimensional relations for
displacement and strain throughout the plate,

INTRODUCTION

When a flexible structure has one dimension that is much smaller than the other two, it can
often be treated as a plate, a two-dimensional structure. Many engineering structures can
be idealized as plates, leading to much simpler equations than would be obtained if three-
dimensional elasticity were used to model them.

Although dimensional reduction processes can be simple for homogeneous, isotropic
plates, and especially for restricted cases of deformation, they are far less tractable for
nonhomogencous, laminated composite plates undergoing arbitrary deformation. Specifi-
cally, difficultics arise in obtaining a two-dimensional strain energy function that is equi-
valent, at least in some sense, to the three-dimensional representation. For nonhomo-
geneous, anisotropic plates, all possible deformations of the three-dimensional structure
must be included in the formulation. This in turn suggests that it is necessary to remove
the well-known restrictions that are typically imposed in a plate analysis.

KirchhofTs classical plate analysis reveals the well-known behavior for linear defor-
mation of homogencous, isotropic plates [see Reissner (1985) and the references cited
therein]. A line element of material normal to the plate mid-surface when the plate is
undeformed remains straight and normal to the reference surface of the deformed plate
during pure extension or pure bending deformation. The length of such line clements is
contracted (“out-of-plune”™ warping) duc to Poisson effects which are manifested in the
transverse normal strain. This behavior allows the determination of six different stiffnesses.
One extensional stiffness (the same in two directions), one stiffness coupling the extension
in two orthogonal directions due to Poisson cffects, onc bending stiffness (the same in two
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directions). one stiffness coupling the bending in two orthogonal directions due to Poisson
effects. one in-plane shear stiffness, and one twisting stiffness.

In order to relax the requirement that onginally normal line elements remain normal,
one must introduce into the displacement field two additonal varubles which depend on the
surface coordinates und govern the orentation of the originally normal line element. In
addition, points aligned along an originally normal line element do not remain on a line
normal to the deformed plate (in-plane” warping). The Reissner-Mindlin shear deformation
theory incorporutes one additional stiffness (the same in two directions) due to transverse
shear. The shear stiffness can also be written in terms of the shear modulus of the material,
the thickness of the plate. and a factor of {. the so-called “shear correction™ fuctor. The
transverse shear stress turns out to be of a higher order than the in-plane stresses by a factor
of i'{ where A is the thickness of the plate, and /is the wavelength of the deformation pattern.

Such simple characterizations are not possible for analysis of nonhomogeneous, aniso-
tropic plates. There are some simplifications for laminated plates, if by “laminated™ we
mean plates constructed of individual thin plates. each one of which having monoclinic
material symmetry about its midplanc. Even this subset of the more general problem s a
monumental challenge and has attracted an enormous amount of attention. Due to space
limitations it is not possible to cite more than a fraction of the work in this ficld—even in
the Last decade. The reader is encouraged to refer to the recent review papers of Noor and
Barton (1989) and Librescu and Reddy (1989) on laminated composite plate modeling.
These, along with the comprehensive discussion on the history and the development of
plate theories by Reissner (1983) should give the interested reader an appreciation for the
ditheulties involved in this subject,

In much of the literature cited in these review papers, it is typical for theories to have
more displacement/rotation vartables than the Reissner Mindlin theory. This is done in
two ways: (1) displacement variables which are associated with the individual layers can
be carried along, the number of which depends on the number of fayers in the plate: (2)
the displacenent ficld may be expanded through the thickness in terms of polynonuals, and
the higher-order coetlicients can then be carried along as additional variables. The former
approach involves a lurge number of degrees of freedom in finite element implementations.
The latter, because of possible discontinuities in material properties between lumina, is
incapuble of giving exact reproduction of quantities which have discontinuous values or
derivatives through the thickness, Thus this method may not yield sufliciently accurate
results for displacement, strain and stress distributions throughout the plate, and it may
not suffice to accurately determine elastic constants,

Even if the number of variables for an anisotropic plate theory were constrained to be
the sume as that of the Reissner-Mindlin theory, there could be elastic couplings among
all the global deformations. This means that instead of seven fundamentally different
stiffnesses, there could be as many as 36 (a fully populated, symmetric 8 x 8 matrix). The
in- and out-of-planc warping deformations may be coupled. If the plate is restricted to be
laminated as defined above, then certain of the 36 constants will vanish, and the calculation
of others will be simplified. In order to obtain the correct elastic couplings in a consistent
manner, all possible deformations of the plate would need 1o be included.

Therefore, in this paper our starting point is a general three-dimensional analysis of
deformation. This general representation will then be simplified by use of the variational -
asymptotical method, developed by Berdichevsky (1979). The present work extends the
work of Berdichevsky (1979) to yield an approximation of the strain encrgy for non-
homogencous, laminated plates. Finally, relations are derived which allow for complete
recovery of the three-dimensional displacement and strain {or stress) ficlds from the results
of a two-dimensional analysis. In spite of this generality, the number of variables remains
the same as in Reissner-Mindlin plate theory.

THREE-DIMENSIONAL FORMULATION

A plate is a flexible body in which matter is distributed about a planar surface so that
onc dimension, A, is significantly smaller than the other two. (Although much of the present
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analysis can be easily extended to treat shells, herein we consider only plates.) The plate is
assumed to be nonhomogeneous only through the thickness. consisting of possibly distinct.
possibly layered. anisotropic materials ; note that material properties and their distribution
vary only through the thickness of the plate. Furthermore, we assume that the plate is
constructed of individual thin plates, or laminae, each one of which has monoclinic material
symmetry about its mid-plane. This way. there is no elastic coupling in the three-dimensional
strain energy between transverse normal and transverse shear strains or between in-plane
and transverse shear strains. This still allows the present formulation to be applicable to
laminated. fiber-reinforced composite plates which are typical in current engineering
practice. because the fiber directions in such undeformed plates are parallel to the plane of
the undeformed plate.

In this section, the three-dimensional strain field is developed first. giving emphasis on
three-dimensional plate geometry: The three-dimensional elastic matrix. which relates the
strain to its conjugate stress given next. The strain energy will then be developed and
decomposed into two positive definite quadratic forms. with which more physical under-
standing of the problem is gained.

Development of the strain field

Now we turn to the three-dimensional strain ficld. Throughout the analysis, Greek
indices assume vitlues 1 or 2, Latin indices assume values |, 2 and 3 and repeated indices
are summed over their ranges.

Undeformed plate geometry. Let us establish o Cartesiin coordinate system ., so that
X, denote lengths along orthogonal lines in the mid-surface and x. = A¢ is the distance off
an arbitrary point to the geometric mid-surface in the undeformed plate. Here { is the non-
dimensional thickness coordinate, and the thickness & is taken to be a constant.

Let b, denote an orthogonal reference triad along the coordinate lines of the undeformed
plate. The position vector from a fixed point O to an arbitrary point is

r(x,, x50 =r*(x,x)) +Ab, = x,b, + b, (n

Here e* is the position vector from O to an arbitrary point on the mid-surface of the
undeformed plate. Thus

12
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where the use of ungled brackets to denote the above integral will be used throughout the
rest of the development.

Deformed plate geometry. In a similar manner, consider the deformed plate con-
figuration. The particle which had position vector (x|, x», {) in the undeformed plate now
has position vector R(x,, x,, {). The specific form of R must await the introduction of
several entities related to the deformation.

To this end, we introduce another orthonormal triad B,(x,. x.), called the deformed
plate triad. The orientation of B, relative to b, can be specified by an arbitrarily large
rotation, and B, is coincident with b, when the plate is undeformed. Rotation from b, to B,
is described in terms of a matrix of direction cosines C(x,, x,) such that

B,=Cb, C,=B-b, (3)

Once a specific form of the displacement ficld is introduced, the matrix x whose
elements are defined by
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can be found. Now, following Danielson and Hodges (1987), the polar decomposition
theorem shows that x can be uniquely decomposed into an orthogonal rotation matrix C
times a symmetric right stretch matrix U,

L= CU. (5

Note that the elements of the matrix € are components of the usual tensor of rotation
resulting from the polar decomposition theorem post-multiplied by C', because x is resolved
in mixed bases as shown in eqn (4). The matrix of Jaumann strain components is then
defined by

[=U-I, (6)
where I is the 3 x 3 identity matrix and [ is a 3 x 3 symmetric matrix containing the

Jaumann strain components. [n accordance with Danielson and Hodges (1987), the rotation
represented by C may be specified by a finite rotation vector ®,(x,, x.. x)B,(x,, x,) so that

C =’ (7)
where @ denotes the antisymmetric matrix whose components are @, = =@, ®,, = &,
@, = —d,. From eqns (5)-(7), we obtain the exact expression

S ;
F=c¢ -1, (8)

Using the estimation procedures of Berdichevsky (1979). it is possible to show that the
elements of © and @ are small quantities of the order of &, where ¢ is the maximum value
of the strain in the plate. This leads to the “small local rotation™ theory of Danielson and
Hodges (1987). Following Daniclson (1991), we then retain only the lowest order terms in
the Taylor series expansions of the matrices in eqn (8), and enforce the symmetry of the
right-hand side, thus obtaining

C=c Yy=1,, 2(I-®)[I+x=-D]-1, =y—-I-O=y"—1+d. (9)

The following expressions for ® and I can be obtained as
& =1x—x") [=la+H-L (10)
Here T is a 3 x3 symmetric matrix containing the Jaumann strain components. The
expression for [ is then quite simple once the comnonents of the deformation gradient are
known. Since the local rotation is of the saume order as the strain, it docs not appear in the

striain expression.

Specification of displucement field. Now, for the purposc of later obtaining the strain

ficld in terms of generalized (i.c. surface) strain measures, we introduce the position vector
from O to the points of the average surface of the deformed plate as

(R(x 1, x2.0)) & R (), x5) = r*(x,. X)) +u*(x,. x1). (1)
where u* (v, x,) 15 a “displacement™ vector, of sorts. This vector is properly understood

as the position vector from a point (x}, x¥) on the mid-surface of the undeformed plate to
a point {x¥, x?¥) on the average surface of the deformed plate. 1t should be evident that u*
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Fig. 1. Schematic of plate deformation.

is not the displacement of a particukur material point on the mid-surtace of the undeformed
plate, which would be given by

(R0 = u*(x, 00 + /e (v, v OBy, X)), (1)
Now the position vector from O to any arbitrary point on the plate can be written as
ﬁ(.\'g. X, ;) = R*{.V;. .\'3) +k;l; ;(‘\.h,\‘_v) ‘f"il“‘,(,“;. .V),;)l;, (,\'l‘ x:}. (;3)

where w, is the warping of the normal line element. The resulting displacement field is shown
schematically in Fig. 1. The shaded surfaces are infinitesimal elements of the average
surfaces of the undetformed and detormed states. An arbitrary material point off the average
surface is represented as a heavy dot. Note that egn {13) includes alt possible deformations.
However, since the warping is a three-dimensional displacement, the function R is six times
redundant. This redundancy can be eliminated by imposing six conditions on the definitions
of R* and/or B, In light of eyn (11) which defines R* to be the average position through
the thickness, one cun casily show that the warping must satisfy the three constrains

{wilxxs, 0 =0, (14

Equation (13) is still indeterminate until three more dependency relations are specified for
B, and/or R*. The relations can result in additional constraints on the warping. depending
on the level of the approximation, One will be introduced immediately below, in the context
of generalized strains | the other two must be dealt with later in the context of the reduction
to two dimensions. These concern the orientation of the vector B, defined below to depend
on the level of accuracy to which the asymptotical approximation is taken. In the first
approximation B, is taken to be normal to the average surface of the deformed plate,
whereas in the second approximation we take it to be associated with an average rotation
of the normal linc element.

Generalized strains. Daniclson (1991) shows that it is possible to express the three-
dimensional strain field in terms of two-dimensional quantities, the so-called generalized
strain measures. These measures arc given by
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€ = R:'By—é,p. Kxﬁ= —BU.Z.BM 27':.‘ = R:'Blv (15)

where ( ), denotes the partial derivative with respect to x,. The vectors B, are taken as
normal to B, and can always be chosen so that ¢,, = &,,. (This is one of the three remaining
dependency relations mentioned above. The others are introduced in the context of the
dimensional reduction.) From the form of eqn (15), one should understand that adopting
a different definition for B, changes the expressions for the generalized strain measures in
terms of displacement and rotational variables. The generalized strain measures can be
arranged in matrix form for convenience as

e=[e 2e; 3::]Tv K=[K; 2K Kz:}T~ 2 =[h 2}'31]T- (16)

where 2x,, = K;;+ K, and ¢ and K account for extensional/in-plane shear and bend-
ing/twisting. respectively ; and 2y¥, accounts for transverse shear strain. [n the first approxi-
mation, 2y* = 0; whereas this is not the case in the second approximation.

Deformation gradient. With these definitions for the generalized strains one can now
derive the matrix x from which the strain field can be obtained directly. Substitution of eqn
(13) into eqn (4), making use of eqns (16), one obtains

l+£||+hCK“+hW|.| le+hCK3|+hW|.2 W'l
X=| e+hK +hwy, L4+, + 0K+ hw, .  wh
29T+ hwy 2y% i+ hwy 14w

where the only nonlinear terms, which are products of K,, and /w,, have been neglected
based on the small strain hypothesis. Now, from the second of egn (10) the Jaumann strain
field is determined.

Strain eneryy
One can group the Jaumann strain into three different column matrices from physical
considerations as follows
r.= [rn 2l r::]vr‘ 2, = [?-rn 2er]T‘ =T, )
where I, includes the extensional and in-plane shearing strains, and I, and I, contain the

transverse shear and transverse normal strains, respectively. Thus, the Jaumann strain can
now be written as

r=[r,2r, r]" (18)

A similar procedure can be followed for the three-dimensional Jaumann stress, which
is conjugate to the Jaumann strain, as shown by Ogden (1984), so that

Z.=[Z\ 2\, Zy)". Z,=12Z\s Z,)]", Z,=Zy,, (19)
where Z, is comprised of the extensional and in-plane shear stresses while Z, and Z, contain

the transverse shear and transverse normal stresses. Therefore, the Jaumann stress may be
rewritten as

Z=(Z. 2, 2] (20)

In light of the above development, the three-dimensional constitutive law between the
Jaumann stress and its conjugate Jaumann strain can be expressed as
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Z. D. D, DJ(T.
Z}t=|DL D, D,|s2l;. cn
ZI D:l Di‘; Dl r[

where D,, D. D,. D,, D, and D, are 3x3, 3x2, 3x1, 2x2, 2x1 and 1 x| matrices,
respectively. This matertal elastic law is written with respect to the plate Cartesian axes,
which are not necessarily along any particular material fiber direction because of the
nonhomogeneity of the plate. In other words. the material constants used in eqn (21) must
be the transformed values, from whatever local coordinate systems may be natural to the
individual laminae. to the Cartesian coordinate system of the plate, x,.

Recalling that £ is constant over the entire plate, the strain energy per unit area of the
plate can then be written as

hJ = 2<zfr>. 2)

Let us now decompose the strain energy into two positive definite, quadratic forms. Here
we define the extensional strain energy J,. and the transverse strain energy J, (containing
contributions from both transverse normal and shear strains) as

Jr=f[‘.‘i{!‘-" Jy=J-J,. (23)

Following Berdichevsky (1979), it can be shown that this representation is unique.

Up to this poinl in the development, the material propertics are still completely
general, [norder to proceed analytically, we found it helpful to simplify the formulation by
specializing eqn (21) somewhat. When cach lumina exhibits a monoclinic symmetry {(c.g.
when fibers in the undeformed plate are oriented parallel to the plane of the undeformed
plate), the 3 x 2 matrix D, and the 2 x | matrix D, both vanish. In this case, the extensional
and transverse energies can be written in terms of the three-dimensional material properties
as follows:

2, =D T, 27, = QMDA+ DI+ D, T, (24)
where
Dy=D.—-D.D;'Di, D, =D 'D]. (23)

After completing the preliminaries of the three-dimensional strain, stress and the strain
energy, we can now turn our attention to the two-dimensional plate modeling.

DIMENSIONAL REDUCTION

In plate formulations, we atiempt to do the impossible—that is, to reproduce, in a
two-dimensional body, the energy stored in a three-dimensional one. This process cannot
be performed in an exact manner. However, due to the interest of working with simpler
systems with smaller dimensions, researchers have turned to asymptotical methods in order
to reduce the dimension of the model for bodies which contain one or more small
parameters. Plates are such bodies, because the thickness of the plate is much smaller than
the other two dimensions.

Thus, in what follows we replace the three-dimensional plate problem by an approxi-
mate two-dimensional problem in which the strain energy will only be a function of
the surface coordinates. This will be done with the aid of the variational-asymptotical

SAS 29:20-H
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formulation originally developed by Berdichevsky (1979). Before getting into the appli-
cation of this method, we give a brief overview of it. Then we will develop the first and
second approximations for the laminated plate problem.

Variational-asymptotical method

This formulation is derived for functionals with small parameters, unlike usual
asymptotical formulations for differential equations with small parameters. Rather than
substituting into the functional all the asymptotical orders of the unknown functions at the
beginning. order assessment is done after each approximation.

Consider a given three-dimensional function & (I", h) with a small parameter . We
decompose this functional into two parts

F(Lh) =& (Y. 2\ ) +84(Y, 2, h), (26)

such that &, is obtained by discarding all smaller contributions to the energy, which are
represented by &,. Here ¥ is a function of surface coordinates only (in our case these
correspond to the generalized strains) and z, is a function of all three coordinates (in our
case it corresponds to the warping). Let us minimize the functional, first considering only
the main contribution &,

minf=n}inﬁ,(‘y.:|)é9‘—|. (27)

Solution of the Euler equations of this functional can be written symbolically as

o=y (¥.0), (28)
which will be designated as the first minimizing function, only if the sccond of such functions
can be shown to be of higher order. Therefore, there is a need to develop the second

aproximation, To do so, we introduce a minimizing function for the second approximation
so that

o=y, (29)
Substituting this into the original functional eqn (26), one will obtain

F(Oh)=F (V)+ &Y, 22, )+ 8, (WY, 2,5, h), (30)

where &, is obtained by discarding all the other smaller contributions, which are now
represented by £,,. Then the minimum of the functional becomes

min # = min & (¥,2,.h) & #,, 3n
sz <2

from which the second minimizing function can be obtained as
2 =y, (Y, ). (32)

If this is of higher order than =, then z; and &, constitute the first approximation. If this is
not the case, then the estimations for the first and the second approximations must be
corrected and the procedure repeated.

Obviously, in order to prove that :, is the second approximation, the third approxi-
mation must be developed in a similar manner. The sequence of approximations may be
stopped whenever it is desired. The original functional can then be written after the kth
approximation as



Strain energy of composite plates 2535

FITH=FMW+F.W)+ -+ W)+&(WV.oio . D+E(W.2in ) (33)

where =, = 5 —w('P. (). It can be seen that the two-dimensional functional is now
asymptotically equivalent to the original three-dimensional one.

In the following sections. we will apply this method for nonhomogeneous, laminated
plates in pursuit of the asymptotically correct strain energy. Before doing so. however, it is
appropriate to discuss the estimation procedure. First. we introduce upper bounds on the
in-plane and bending strain measures ¢, and ¢, such that

h
e <e,, /K"K € €. 34)

Now, for the first approximation we choose to keep terms in the strain field that are of the
order of ¢ where

(e.t+6) <e. 35)

This implies that we will have strain energy density of the order uc*® where g is of the order
of the elastic moduli.

Rather than write out complete expressions for the strain field, we will only write the
terms needed to the appropriate order. The terms not written for the Ath approximation
contribute terms to the strain energy of the order uc® (A/1)** ' where & > | and where { is
the smallest constant for which both of the following hold for all possible combinations of
euand f§

o h o o
Ve < SVKIK, <. (36)

First approximation

Following Berdichevsky (1979), we stipulate that B, = N where N is the unit normal
to the deformed plate average surfuce. It should be noted that N+ R?% = 0 and hence that
2y} = 0. These constitute the two remaining dependency relations in the context of the first
approximation; they will not be used in the second approximation. Here we denote B, as
the deformed plate triad for the first approximation, whose orientation relative to b, can be
specified by an arbitrarily large rotation. For the first approximation only, the measure
numbers of the rotation vector can be found in terms of the gradient of the displacements,
in accord with the well-known KirchholfT hypothesis.

We now need the terms in the Jaumann strain that contribute to the first approximation.
To get these, we substitute eqn (16) into the second of eqns (10) and group the resulting
terms in accordance with eqns (17). Finally, retaining only those terms that are of order ¢,
we obtain

Fe=c¢+(Kh, 2 =w), [ =w), where  wy = [w, w,]T, (37,38)
and ( ) denotes differentiation with respect to £,

The exiensional energy does not include any contribution from warping; thus, only
the transverse energy needs to be minimized with respect to warping. Then, whether the
minimized function is consistent with the above estimates will be explored. Now, the
variational problem is written as follows :

27, =D >+ (D + D (e +SKR)]*) 39

to be minimized with the constraints from eqn (14).
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(wy) = (w3 =0. (40)

It can be seen that the first part of the transverse energy. which is due to in-plane warping,
is decoupled from the out-of-plane warping. The minimum value of the first term can be
reached when w; = 0 with the constraints (w;» = 0. Let us investigate the remaining part.
The functional is now

27, = (D[wi+D (e+{KMI*D (41)

with the constraint {w,)» = 0. First we define some indefinite integrals associated with the
possibly discontinuous quantity D, so that

Dlx = —Dy D:Lz = “‘gDy {42)

Note that inter-lamina continuity of D, must be maintained, leaving only one 1 x 3 matrix
of integration constants for each of the eqns (42). Next we make a change of variable as

W3=DL|€+DLQK,I+WS. (43)
Then. the functional reduces to the simple form
27, = (D). (44)

We need to find the transformed constraint for this functional. Applying the original
constraint to eqn (43), one can obtain

(wyy =0, (45)
if the integration constants from eqn (42) are chosen so that
(D> =(Dy>=0. (46)

Inter-lamina continuity must also be maintained on the warping displacement w;, but
discontinuities in the derivatives of w, are, of course, permitted.

Now to deal with the transformed variational problem is trivial, since the minimum
of J,(w,), with the constraint given by eqn (45), is reached when w; = 0. Thus, the warping
is obtained for the first approximation of laminated plates as

wy =0, wy=D, e+D ,Kh (nonhomogeneous)

l 1
wy= —{De~3 (CZ - ﬁ)DLKIz (homogeneous). 47

From this equation we see that the warping is of order ¢. This is, in fact, consistent with
our estimations. However, to accept that this is the first approximation, one needs to
check the second approximation and confirm that the warping function of the sccond
approximation is of a higher order than that of the first one. It will be seen in the next
section that this is the case. The nature of the warping is simple: the in-plane warping is
zero and the out-of-plane warping consists of the normal line element contracting or
stretching in response to deformation involving € and K.

Substituting the warping functions into the transverse energy, one can see that in the
Jfirst approximation the transverse energy is zero. The total strain energy per unit area is
then comprised only of the extensional energy
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hJ =hJ, = g((HCKh)TDu(HCKh))- (48)

It is possible to define the force and moment stress resultants N and M, respectively, as
follows:

oJY . AN
N=(Z h=h (5;> . M=Zyh =h (FE) . (49)

which in turn yields the stiffness matrix given by classical laminated plate theory
N A Bjile
{M} = [BT D] {A} 0

A=I(Dy>. B=h(D). D=h{Dy). (51)

where

where D, = @ the well-known transformed reduced stiffness matrix [see Jones (1975)].
The characteristics of the first approximation may be summarized as: (1) normal line

clements of the undeformed plate remain straight and normal to the deformed plate average

surface; (2) the transverse normal strain is nor zero; (3) the transverse normal stress is

for both laminated and isotropic cascs, the first approximation coincides with clussical plate
theories.

Second approximation

In the context of the second approximation, B,(x,, x,) is not necessarily parallel to N.
Thus, in addition to the three constraints in egn (14) and the choice of B, such that g, = &,,,
the warping can now be shown to satisfy the two additional constraints

Gwalx,x2.0))> =0 (52)

which also fixes the orientation of B,(x,, x;) as

CCR(x1, x2,0)) _ CR(x 1, x2.0) .

KR (x1 %2, 00 (53)

Bl(xlv XZ) = h
B +h{{ws)

Because of this, the shear strain measures 2y¥, from eqn (15) are not zero. Furthermore, it
may be shown that

N:B; = 1+ 0(cd). (54)

The orientation of the kinematical deformed plate triad B, relative to b, can be specified in
terms of oricntation angles, Rodrigues parameters, or any suitable angular displacement
parameters for arbitrarily large rotation.

For the second approximation, we will consider the terms in the strain expressions
which contribute terms to the strain energy of order uc(h/l)%. The Jaumann strain for the
second approximation becomes

Fe=¢e+{Kh+dw;. 2, =wi+22y*+Clw;, [ =w), (59)

where
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a h
é oxy 0
a=hl | a=n| S S (56)
C ¢x.  Cx,
éx, é
- 0 a.“: -

According to the rules of variational-asymptotical analysis. here we introduce another set
of warping functions:

W, =, Wy= l'j+D‘L|€+DL3K‘h. (57)

where ¢, and v, are warpings for the second approximation. These must then be substituted
back into the strain energy. In the extensional strain, the term .oy turns out to be of the
order e(h/N)*, which is of a higher order by (#/)? than the other terms in I',. However, in
the strain energy this unusual term’s contribution is of the same order as all the others
which are pertinent to the second approximation, i.e. ue® (h//)°. The two components of
the strain energy turn out to be

2y = ((s-{»—CKh)TD;,(&‘%-CKh))+/?;(_(i:_+-_§_1\'lx)’r0,‘ ety ),
2, =D+ + 20"+ AUD E+ D KR Doy + 272 + 0D e+ DGR, (58)

where the underlined term in the extensional energy is the “unusual™ one discussed above.
The strain energy is to be minimized with respect to the perturbed warpings ¢, and ¢, subject
to constraints obtained from eqns (14) and (52) as

uy) = <L’u> = <‘:l'1;> = 0. 59

With the application of the constraints in eqn (59), the underlined term in J; will vanish
if D, is constant through the thickness (i.c. the same in cach layer of a laminated plate).
For example, the material constants which make up D, are constant through the thickness
for homogeneous plates, for laminated plates with the same material in all layers and whose
lamina are each angle plies with building units of the form [0, — 0], und for laminated plates
whose lamina are each woven cloth. In general, however, this term is quite troublesome
indeed, it prevents one from minimizing the strain energy with respect to v, (because the
energy is not a quadratic form with this term present).

We have chosen to neglect this term, with the knowledge that the resulting theory will
be asymptotically exact only for the constant D, case, and an approximation otherwise.
Alternatively, one could develop a higher-order plate theory, with a sufficient number of
additional kinematical variables to allow this term to be “kilied™ with additional constraints.
Such a development would be more complex than the one we have pursued here, but would
appear to be superior to theorics in which the number of kinematical variables is dependent
on the number of laminae.

Without the underlined term, it can be scen that J, remains independent of the warping,
as in the first approximation, Thus, it is only necessary henceforth to minimize /. This too
can be simplified. The first part of J,, which is due to out-of-plane warping, is decoupled
from the in-plane warping. The minimum value of this can be reached with the constraints
{vy» = 0, when v; = 0. Let us now investigate the remaining part. The remaining functional
to be minimized is

27, = oy + 27+ (D g+ D LK D[y + 27+ 8D e+ D LKD) (60}

with constraints taken from the second and third of eqns (59). Let us then define
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Cii=-D,. Coy=-Dy, (6

and make a change of variable
vy = —2y*0+0(C. e+ C . Kh)+2y{ +7y. (62)
One can then express J, simply as
2, = (@ +20)"D,(F; +27)). (63)

Applying the constraints on vy in eqns {(59) to eqn (62), one can obtain

=5 =0 (64)
if
2y = 2p*— 120(E e+ E |, Kh) (65)
and
(Cid=(Ci» =0, (66)
where
En=(Cul). EL=(C.:). (67)

Here eqn (66) is employed in order to find the integration constants coming from eqn (61).
Here it should once more be noted that in performing the integrations with respect to ,
inter-lamina continuity on the warping v, and on C, must be satisfied. If these conditions
are met, all integration constants can be determined uniquely.

We now need to solve the transformed variational statement with the functional J (7))
and constraints given by eqn (64). Following the usual steps of the variational calculus one
can obtain the minimum as

5 =2y, (68)
where
& = L (Do=8D) (E=8E)"'~Li, Di=D'. Da=5 i,
(D> =0, (D> =0, Eo={Dul), Er={Dub, (69

and where [ is the 2 x 2 identity matrix. Substitution of #; from eqns (68) and (69) and 2
from eqn (65) into eqn (62), one can find the in-planc warping as

vy = & (Ci—120E, )e+0,(CL.—120E ;) Kh+%2y. 70)

Duc to in-plane warping, it is evident that the second approximation thus allows the line
elements which are originally normal to the undeformed plate to deform so that they are
no longer straight and, due to shear deformation, no longer normal to the deformed plate.
Substitution of this result into the original functional J, gives the minimum value of this
functional, that is the shear energy



2540 A. R. ATiLGaN and D. H. HoocGes
J.=12,7%42y, (71)

where
G =(6"DE>. € =5D"(1-42)(E,—8E,) " (72)

This completes the solution for the second approximation. Recall that this theory is
asymptotically correct if D, is constant through the thickness; thus its accuracy will be
dependent on the type of construction. [t should be noted that % is a function only of D,
which, in turn. is a function of the material shear moduli. G, and G.,. and the ply angle
for each lamina. If the material is the same in every lamina and if G|; = G;,. the transverse
shear stiffness reduces to

4 = 1D, (samematerialeachlaminaand G, = G,)). (73)

similar to the transverse shear stiffness for plates made of isotropic materials as first derived
by Reissner (1985). Otherwise one must determine % from eqns (72).

Further simplifications in the warping and transverse shear strain measure can be made
for a homogeneous, monoclinic plate. Equations (70) and (65) reduce to

U W\ (3 o Se(e 3,
Uy =2“ (S “'l‘z‘ ((DL§.+6C 5 —:7_6 (7,lel—jg S "‘2(-) 7

(thomogencous),

|
£ a0 Kh, (74)

2y =2y*+
while egn (73) applies as is to this case.

The characteristics of the second approximation may be summarized as: (1) normal
line elements of the undeformed plate do not remain straight and normat to the deformed
plate average surface; (2) the transverse shear stresses are not zero; (3) the transverse
normal strain is not zero ; and (4) the transverse normal stress is zero.

NONLINEAR PLATE ANALYSIS

The expression for the strain energy per unit area of a laminated plate (excluding
boundary-layer phenomena) is now available from eqns (50) and (71) as

| el'"[A B 0 e
h/=$Ky |B" D 0{{K (75)
2y 0 o0 %ll2y

This expression for the strain energy is quite simple in form, in spite of the fact that the
theory is valid for large displacements and large rotations (which enter through nonlinear
expressions for the generalized strains).

Now, we can give the final form of the constitutive law. In addition to the force and
moment stress resultants given by eqn (49), here we define the transverse shear stress
resultant as

] T
Q =<(Z>h = h[—‘iJ = 52y, (76)

a(2y)

The two-dimensional elastic law follows as
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7 ¥

Fig. 2. Planar view of displacement shift to relate u to 2y

N A B 03¢
My=18B" D 0|{K}. (77
Q 0 0 %Iy

Now, let us recapitulate the ingredients of the theory as it now stunds. The plate
boundary value problem is based on five nonlincar intrinsic equilibrium equations, as shown
by Berdichevsky (1979) and Hodges e al. (1992), which contain the eight stress resultants
(N, M and @) and the eight gencralized strain measures (£, K and 2y). The stress resultants
and generalized strains are related through the eight scalar equations in the clastic law, eqn
(77). Recalling the kinematical development above, one can find relations between the
generalized strain measures £, K and 2y* and the average surfuce displacement measures of
u* and two rotational parameters needed to specify the direction of B,.1 Finally eqn (65)
relates 2y to 2y*.

While we have a complete system of equations, a simpler set would be desirable. One
way to accomplish this is to introduce a transformed displacement u which can be related
to 2y in the same way the u* is related to 2y*. This can be accomplished by requiring,
analogously to the third of eqn (15), that

R.:.Bl = 2?1)- (78)
Indeed, it can be shown that a simple shift of the displacement variable along B; such that

u= u"'-—-th(E“E+E“Kh)B; (79)

will satisfy this requirement, will not change K at all, and will chunge ¢ only by terms of
order ¢2.

A sketch of how the displacement is shifted in accordance with eqn (79) is shown in
Fig. 2. (The shift is greatly exaggerated in the figure to show its character.) Notice how the
transformed surface may be either above or below the average surface depending on the
sign of the curvature. Also, recall that neither the transformed displacement u nor the
average surface displacement u* correspond to the displacement of a material point on the
undeformed plate mid-surface, which is given in eqn (12).

From the above development, displacement [eqns (47) and (70)]. strain [egn (55)] and
stress [eqn (21)] for any arbitrary point arc obviously available once the plate problem is
solved for the generalized strain mcasures. In Fig. 3 a chart is given which depicts the
process of applying the present method to a laminated plate.

t Note that there arc only two rotation parameters necessary because the third rotation can always be chosen
so that £;; = &,,. This point is treated in depth by Hodges er af. (1992).
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1-D
Through-the-thickness
analysis (linear)

warping &
strain functions;
displacement shift

el:zlx:sc 3-D displacement &
constants fecovery strain/stress ficlds

displacement
parameters.
generalized strains.
& stress resultants

2D
globai-deformation
analysis (nonlinear)

Fig. 3. Overview of plate analysis.

CONCLUDING REMARKS

In this paper we have developed a strain encrgy tunction tor a laminated. anisotropic
plate up through sccond order in Ai/{. The present results offer a straighttorward approach
to solve the complete plate problem, including determination of elastic constants and
warping displiccement, striin and steess distributions through the thickness. This generality
is present even though the number of variables in the present theory is the same as in
Reissner -Mindlin theory, The first approximation corresponds to classical lanunated plate
theory. All quantitics through the second approximation, including the shear correction
factor, are determined in closed form. Note that the second approxinution is asymptotically
correct only for plates for which the material constants in the matrix 22, do not vary through
the thickness, However, itis believed to be adequate for large-deflection engineering analysis
ol laminated, tiber-reinforeed plates cach lamina of which possesses monoclinic symmetry
about its mid-planc.

A valid eriticism of the present work would be that it has ignored edge-zone phenomena.
Although these effects can be neglected in classical plate theory (the first approximation),
one should take them into account in the higher approximations where the strain energy
of a loaded edge may depend on the self-equilibrated part of the load. Here we note the
qualitatively different contributions of Berdichevsky (1979) and Arnold and Falk (1989)
for consistent development for the edge-zone formulation for homogeneous, isotropic
plates. For nonhomogencous, anisotropic plates, however, this subject is still an open
problem.

The present method would need to be extended to treat general nonhomogencous,
anisotropic plates. This would provide a means to treat plates which have fiber-reinforce-
ment through the thickness, such as could result from 4 three-dimensional braiding manu-
facturing process. Also, the present method does not provide direct access to the peeling
stress in laminated plates. [fa more accurate estimation were needed than could be obtained
from integration of the equilibrium equations, one would need to consider higher approxi-
mations. Finally, provided the present plate theory is adequately tested and shown to
perform well relative to other theories, extension of this modeling approach to luminated
shells may prove to be feasible.
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